Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
iScience ; 2023.
Article in English | EuropePMC | ID: covidwho-2300394

ABSTRACT

A 25-year-old patient with a primary immunodeficiency lacking immunoglobulin production experienced a relapse after a 239-day period of persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Viral genetic sequencing demonstrated that SARS-CoV-2 had evolved during the infection period, with at least five mutations associated with host cellular immune recognition. Among them, the T32I mutation in ORF3a was found to evade recognition by CD4+ T cells. The virus found after relapse showed an increased proliferative capacity in vitro. SARS-CoV-2 may have evolved to evade recognition by CD4+ T cells and increased in its proliferative capacity during the persistent infection, likely leading to relapse. These mutations may further affect viral clearance in hosts with similar types of human leukocyte antigens. The early elimination of SARS-CoV-2 in immunocompromised patients is therefore important not only to improve the condition of patients but also to prevent the emergence of mutants that threaten public health. Graphical

2.
Nat Commun ; 13(1): 7063, 2022 12 16.
Article in English | MEDLINE | ID: covidwho-2185825

ABSTRACT

Although the importance of virus-specific cytotoxic T lymphocytes (CTL) in virus clearance is evident in COVID-19, the characteristics of virus-specific CTLs related to disease severity have not been fully explored. Here we show that the phenotype of virus-specific CTLs against immunoprevalent epitopes in COVID-19 convalescents might differ according to the course of the disease. We establish a cellular screening method that uses artificial antigen presenting cells, expressing HLA-A*24:02, the costimulatory molecule 4-1BBL, SARS-CoV-2 structural proteins S, M, and N and non-structural proteins ORF3a and nsp6/ORF1a. The screen implicates SARS-CoV-2 M protein as a frequent target of IFNγ secreting CD8+ T cells, and identifies M198-206 as an immunoprevalent epitope in our cohort of HLA-A*24:02 positive convalescent COVID-19 patients recovering from mild, moderate and severe disease. Further exploration of M198-206-specific CD8+ T cells with single cell RNA sequencing reveals public TCRs in virus-specific CD8+ T cells, and shows an exhausted phenotype with less differentiated status in cells from the severe group compared to cells from the moderate group. In summary, this study describes a method to identify T cell epitopes, indicate that dysfunction of virus-specific CTLs might be an important determinant of clinical outcomes.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Humans , SARS-CoV-2 , T-Lymphocytes, Cytotoxic , Epitopes, T-Lymphocyte , HLA-A Antigens
3.
Inflamm Regen ; 42(1): 51, 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2139784

ABSTRACT

As an important part of adaptive immunity, T cells are indispensable in the defense against pathogens including viruses. SARS-CoV-2 is a new human coronavirus that occurred at the end of 2019 and has caused the COVID-19 pandemic. Nevertheless, most of the infected patients recovered without any antiviral therapies, suggesting an effective immunity developed in the bodies. T cell immunity responds upon SARS-CoV-2 infection or vaccination and plays crucial roles in eliminating the viruses and generating T cell memory. Specifically, a subpopulation of CD4+ T cells could support the production of anti-SARS-CoV-2 antibodies, and cytotoxic CD8+ T cells are also protective against the infection. SARS-CoV-2-recognizing T cells could be detected in SARS-CoV-2-unexposed donors, but the role of these cross-reactive T cells is still in debate. T cell responses could be diverse across individuals, mainly due to the polymorphism of HLAs. Thus, compared to antibodies, T cell responses are generally less affected by the mutations of SARS-CoV-2 variants. Up to now, a huge number of studies on SARS-CoV-2-responsive T cells have been published. In this review, we introduced some major findings addressing the questions in the main aspects about T cell responses elicited by SARS-CoV-2, to summarize the current understanding of COVID-19.

4.
J Immunol ; 2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2080591

ABSTRACT

Although the immunological memory produced by BNT162b2 vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been well studied and established, further information using different racial cohorts is necessary to understand the overall immunological response to vaccination. We evaluated memory B and T cell responses to the severe acute respiratory syndrome coronavirus 2 spike protein before and after the third booster using a Japanese cohort. Although the Ab titer against the spike receptor-binding domain (RBD) decreased significantly 8 mo after the second vaccination, the number of memory B cells continued to increase, whereas the number of memory T cells decreased slowly. Memory B and T cells from unvaccinated infected patients showed similar kinetics. After the third vaccination, the Ab titer increased to the level of the second vaccination, and memory B cells increased at significantly higher levels before the booster, whereas memory T cells recovered close to the second vaccination levels. In memory T cells, the frequency of CXCR5+CXCR3+CCR6- circulating follicular Th1 was positively correlated with RBD-specific Ab-secreting B cells. For the response to variant RBDs, although 60-80% of memory B cells could bind to the omicron RBD, their avidity was low, whereas memory T cells show an equal response to the omicron spike. Thus, the persistent presence of memory B and T cells will quickly upregulate Ab production and T cell responses after omicron strain infection, which prevents severe illness and death due to coronavirus disease 2019.

5.
J Infect Chemother ; 28(8): 1208-1211, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1983457

ABSTRACT

A 53-year-old male Japanese patient with COVID-19 was admitted to our hospital after his respiratory condition worsened on day 9 of the disease. With the diagnosis of severe COVID-19, treatment with remdesivir, dexamethasone, and unfractionated heparin was started for the prevention of thrombosis. Although the patient's respiratory status data improved after treatment, severe respiratory failure persisted. Thrombocytopenia and D-dimer elevation were observed on day 8 after heparin therapy initiation. Heparin-induced thrombocytopenia (HIT) antibody measured by immunological assay was positive, and contrast computed tomography showed pulmonary artery thrombus. The patient was diagnosed with HIT because the pre-test probability score (4Ts score) for HIT was 7 points. Heparin was changed to apixaban, a direct oral anticoagulant, which resulted in a reduction of the pulmonary thrombus and improvement of the respiratory failure. In patients with COVID-19, anticoagulant therapy with heparin requires careful monitoring of thrombocytopenia and elevated D-dimer as possible complications related to HIT. (151/250 words).


Subject(s)
COVID-19 Drug Treatment , Pulmonary Embolism , Respiratory Insufficiency , Thrombocytopenia , Thrombosis , Anticoagulants/adverse effects , Heparin/adverse effects , Humans , Male , Middle Aged , Pulmonary Embolism/drug therapy , Respiratory Insufficiency/chemically induced , Thrombocytopenia/chemically induced , Thrombocytopenia/diagnosis , Thrombocytopenia/drug therapy , Thrombosis/drug therapy
6.
J Exp Med ; 218(12)2021 12 06.
Article in English | MEDLINE | ID: covidwho-1467277

ABSTRACT

Adaptive immunity is a fundamental component in controlling COVID-19. In this process, follicular helper T (Tfh) cells are a subset of CD4+ T cells that mediate the production of protective antibodies; however, the SARS-CoV-2 epitopes activating Tfh cells are not well characterized. Here, we identified and crystallized TCRs of public circulating Tfh (cTfh) clonotypes that are expanded in patients who have recovered from mild symptoms. These public clonotypes recognized the SARS-CoV-2 spike (S) epitopes conserved across emerging variants. The epitope of the most prevalent cTfh clonotype, S864-882, was presented by multiple HLAs and activated T cells in most healthy donors, suggesting that this S region is a universal T cell epitope useful for booster antigen. SARS-CoV-2-specific public cTfh clonotypes also cross-reacted with specific commensal bacteria. In this study, we identified conserved SARS-CoV-2 S epitopes that activate public cTfh clonotypes associated with mild symptoms.


Subject(s)
COVID-19/immunology , Epitopes, T-Lymphocyte/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes, Helper-Inducer/immunology , Adult , Antibodies, Viral/immunology , Female , HLA Antigens/immunology , Humans , Lymphocyte Activation , Male
SELECTION OF CITATIONS
SEARCH DETAIL